Learning Compositional Sparse Bimodal Models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Compositional Sparse Models of Bimodal Percepts

Various perceptual domains have underlying compositional semantics that are rarely captured in current models. We suspect this is because directly learning the compositional structure has evaded these models. Yet, the compositional structure of a given domain can be grounded in a separate domain thereby simplifying its learning. To that end, we propose a new approach to modeling bimodal percept...

متن کامل

Sparse Compositional Metric Learning

We propose a new approach for metric learning by framing it as learning a sparse combination of locally discriminative metrics that are inexpensive to generate from the training data. This flexible framework allows us to naturally derive formulations for global, multi-task and local metric learning. The resulting algorithms have several advantages over existing methods in the literature: a much...

متن کامل

Learning Compositional Categorization Models

This contribution proposes a compositional approach to visual object categorization of scenes. Compositions are learned from the Caltech 101 database and form intermediate abstractions of images that are semantically situated between low-level representations and the highlevel categorization. Salient regions, which are described by localized feature histograms, are detected as image parts. Subs...

متن کامل

Compositional Models for Reinforcement Learning

Innovations such as optimistic exploration, function approximation, and hierarchical decomposition have helped scale reinforcement learning to more complex environments, but these three ideas have rarely been studied together. This paper develops a unified framework that formalizes these algorithmic contributions as operators on learned models of the environment. Our formalism reveals some syne...

متن کامل

Greedy Compositional Clustering for Unsupervised Learning of Hierarchical Compositional Models

This paper proposes to integrate a feature pursuit learning process into a greedy bottom-up learning scheme. The algorithm combines the benefits of bottom-up and top-down approaches for learning hierarchical models: It allows to induce the hierarchical structure of objects in an unsupervised manner, while avoiding a hard decision on the activation of parts. We follow the principle of compositio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2018

ISSN: 0162-8828,2160-9292

DOI: 10.1109/tpami.2017.2693987