Learning Compositional Sparse Bimodal Models
نویسندگان
چکیده
منابع مشابه
Learning Compositional Sparse Models of Bimodal Percepts
Various perceptual domains have underlying compositional semantics that are rarely captured in current models. We suspect this is because directly learning the compositional structure has evaded these models. Yet, the compositional structure of a given domain can be grounded in a separate domain thereby simplifying its learning. To that end, we propose a new approach to modeling bimodal percept...
متن کاملSparse Compositional Metric Learning
We propose a new approach for metric learning by framing it as learning a sparse combination of locally discriminative metrics that are inexpensive to generate from the training data. This flexible framework allows us to naturally derive formulations for global, multi-task and local metric learning. The resulting algorithms have several advantages over existing methods in the literature: a much...
متن کاملLearning Compositional Categorization Models
This contribution proposes a compositional approach to visual object categorization of scenes. Compositions are learned from the Caltech 101 database and form intermediate abstractions of images that are semantically situated between low-level representations and the highlevel categorization. Salient regions, which are described by localized feature histograms, are detected as image parts. Subs...
متن کاملCompositional Models for Reinforcement Learning
Innovations such as optimistic exploration, function approximation, and hierarchical decomposition have helped scale reinforcement learning to more complex environments, but these three ideas have rarely been studied together. This paper develops a unified framework that formalizes these algorithmic contributions as operators on learned models of the environment. Our formalism reveals some syne...
متن کاملGreedy Compositional Clustering for Unsupervised Learning of Hierarchical Compositional Models
This paper proposes to integrate a feature pursuit learning process into a greedy bottom-up learning scheme. The algorithm combines the benefits of bottom-up and top-down approaches for learning hierarchical models: It allows to induce the hierarchical structure of objects in an unsupervised manner, while avoiding a hard decision on the activation of parts. We follow the principle of compositio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2018
ISSN: 0162-8828,2160-9292
DOI: 10.1109/tpami.2017.2693987